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1. Introduction
1.1. Purpose of The System

Voiceolation is a music source separator that extracts vocals from songs. Either

companies or individuals may need it for music information retrieval (MIR) and

karaoke, may use it for their personal usage like mixing or editing a song.

Most people can produce music professionally or amateurishly at their homes,

thanks to getting easy-to-use DAWs; their plugins, tutorials increased, diversified and

DAWs became widespread. They - whether professional or not - require clean vocal

tracks to use in their music projects. Some tracks’ vocal channels are unobtainable

because of issues with record labels like copyright, lost files etc. or simply the song is

being too old for having stems for vocals. Let’s assume you want to mash-up 2 songs

you like - that is very popular nowadays. Unfortunately, they do not have any stems

available because of mentioned reasons. That’s where Voiceolation comes in to extract

desired instruments, especially vocals. Instruments can be reproduced on DAWs,

although it depends on music knowledge, it is hard to imitate perfectly in comparison

with the having stems. On the other hand, vocals can not be produced with the same

method. It should be recorded again with the same singer -it can be impossible, if not

it will be grueling- or a different singer -it will not be the same.

As for corporations, some well-known companies such as Facebook and

Deezer are trying to expand MIR scope by researching source separation techniques.

These stems can be used for big data applications like genre classification, singer

identification or vocal stems can be used for generating transcripts for a song or

speech.

Imagine you are in a crowded party, everyone talking to each other and music

blasting through your surroundings. Your brain is able to focus on a single

conversation and ignore the other sounds. This phenomenon is called the cocktail

party effect. Our system, like other audio source separation projects, will try to

accomplish what our brains do.
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Music source separators have become very common after the rising popularity

of machine learning and neural networks. In the past, there were limited amounts of

labeled datasets for training as they are difficult to label and require professional

annotators. While the world is trying to overcome these hardships and gain great

momentum towards the perfect source separator methods, they still need to improve,

also datasets need to expand to be comprehensive that include various genres,

languages, etc.

1.2. Design Goals

1.2.1. Reliability

Even the simplest sounds in real life are combinations of different frequencies,

for example when you look at the waveform of the flute sound signal you won’t see

simple sine waves, it will be complicated. In order to extract this sound from a noisy

environment, simple phase cancellation or brick-wall filters will not suffice because

of the varying frequencies.

This is where we depend on neural networks for doing the classifications,

making predictions, and learning the patterns of vocals/instruments for accurate

isolating. When a signal is examined in the frequency-domain, it is so compatible

with image processing methods. That’s why we will use image processing and so on

U-Net, because image processing is so advanced and dependable over waveform

applications for now.

Moreover, the results of the project will be comparable with other projects in

the benchmark using the same dataset1.

1.2.2. Performance

We will be working on spectrograms while training the neural network.

Because we will be focusing on vocals which are between 80-1000 Hz approximately

(Goddard Blythe, 2017), we can crop the top half of the spectrogram with a low-pass

filter which will result in a smaller working area which leads to higher performance

for neural network training.

1 Music Source Separation on MUSDB18
https://paperswithcode.com/sota/music-source-separation-on-musdb18
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1.2.3. Usability

The project will be presented in the website to use for everyone who needs

vocal separation to whatever and has basic computer skills. The website shall be easy

to use.

1.2.4. Universality

If MUSDB18 were a larger and more comprehensive dataset, although one of

the most diverse and largest, the project would be more eligible for all types of songs.

However, after the model is created by using MUSDB18, the model may improve if

other datasets were used and/or found.

1.2.5. Legality

Because of copyright issues, users must be agreed on that using Voiceolation is

fully their responsibility. We do not recommend users to use Voiceolation for songs

that may lead to legal issues. Thus, if they want to use Voiceolation, they must agree

to the Terms of Service which does not conflict with DMCA. The user must know that

Voiceolation has no responsibility for DMCA issues, it is their responsibility. Users

know these and accept the Terms of Service, then they are able to use Voiceolation.

1.2.6. Security

We will not ask, hold or store any kind of user information. We do not save

uploaded sound files because it can also contain private information. The file will be

processed, and then will be deleted from the server. The processed version will be

available for only limited time which is enough for listening and downloading. We

will not share any kind of user data to third parties.
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1.3. Definitions, Acronyms, and Abbreviations

Term Definitions, acronyms, and abbreviations

stem A stem is a group of audio sources mixed together, for example a vocal stem

consists of vocal record and/or vocal chops.

DAW Digital Audio Workstation2

MIR Music Information Retrieval3

CNN Convolutional Neural Network4

MUSDB18 “The musdb18 is a dataset of 150 full length music tracks (~10h duration) of

different genres along with their isolated drums, bass, vocals and other

stems.”5

U-Net “The U-Net is convolutional network architecture for fast and precise

segmentation of images.”6

STFT Short Time Fourier Transform7

DMCA Digital Millennium Copyright Act8

8 DMCA Protection & Takedown Services
7 Short-time Fourier transform - Wikipedia
6 https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
5 https://sigsep.github.io/datasets/musdb.html
4 Convolutional neural network - Wikipedia
3 http://www.eecs.qmul.ac.uk/legacy/easaier/files/technical/retrieval/musicretrieval.pdf
2 Digital audio workstation - Wikipedia
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1.4. Overview

The project aims to extract/isolate vocals from any song. It is really common to

encounter music tracks with inaccessible vocal stems, tracks due to various issues. Extracting

vocals - in general, source separation - is not only used for remixing or editing but also used

for music information retrieval (MIR) in order to define and brand music genres. There are

similar softwares available, though most of them have flaws due to insufficient datasets, only

focusing on acoustic music etc. Furthermore, our goal is even if we can not surpass already

existing projects, we believe we might look at this subject with a different angle.

2. Current Software Architecture
Our current system is without the neural network architecture, as we leave the

implementation of the model to the next course. Our priority was creating the spectrogram

from audio files to be able to feed the neural network, since the proposed neural network

model uses image processing.

We will use Python for everything since Python has advanced machine learning

libraries, as for signal processing MATLAB is useful but Python does not fall behind on this

subject with its extensive libraries like scipy and librosa. We will use these libraries along

with a few helpers like numpy which excels at arrays.

For generating the spectrogram, a sound file is needed which is librosa or scipy can

load as numpy ndarray along with sample rates. Sample rate is 44.1 KHz for MUSDB18

dataset.

As mentioned in performance subheading of design goals, we apply a low-pass filter.

We used scipy.signal module for filtering in time-domain. We used the Butterworth filter type

because it has minimal ripple in the passband also called ‘maximally flat magnitude filter’.

In order to generate a spectrogram we need to compute discrete Fourier transforms

which will transform time domain to frequency domain over short overlapping windows.

This process results in time-frequency domain and is called ‘short-time fourier

transform(STFT)’. Default values of frame (window) size and hop size are 2048 and 512

samples respectively, which is default for librosa.stft.
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Before plotting the result and observing the spectrogram a simple but effective

modification should be done to frequency representation of the spectrogram. Lot of

instruments and sounds, especially human voice, are at the lower end of human hearing range

(20Hz- 20000Hz), because of that a linear representation of frequency spectrum’s amplitude

responses will be stacked on the bottom where all of the sounds exist. In order to solve this

problem, the frequency scale of the spectrogram should be logarithmic. This allows more

spread and detailed display on the lower side of the spectrogram where the vocal is located.

Below are the spectrograms of the same music with logarithmic and linear frequency scales.

Figure 1: Spectrograms of the same music with linear(left) and logarithmic(right) frequency

scales, created by the current software of the project.

Figure 2: Complete mixture of a song (left).  Vocal stem of same song(right)

These spectrogram comparisons indicate that even with a low-pass filter with 2048 Hz cutoff

frequency no meaningful vocal data is lost. Because vocal frequency falls into 80-1000 Hz.

7



Figure 3: Block diagram representation of the planned architecture in basic

manner.

3. Proposed Software Architecture
3.1. Overview

The core of Voiceolation software shall be a neural network. We will create a

U-Net based CNN, but we cannot give detailed architectural information since our

focus on neural networks will be the latter half of the project, so we mostly mentioned

the website architecture that we will create in the last stage, after the training of the

network.

In the proposed software architecture part we described analysis of subsystem

decomposition in part 3.2. It is about relations between subsystems. In part 3.3, we

described hardware software relationship. Part 3.4 and 3.5 are generally about data

management and security. 3.7 is about the usage of the web site like how to start, end

processes. All parts give detailed information that we used in Voiceolation.
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3.2. Subsystem Decomposition

Our system has two main objectives as client side and server side. Client side

consists of a web site which has upload-download pages. The only aim is building a

bridge between a user and the server. Web site takes sound files as an input and sends

it to the neural network. On that, we have two pre-processes elements: low pass

filtering and Fourier transform. After these steps the input sound file turns to

spectrogram. Then, that spectrogram goes into the U-Net phase. After some

processes, the server gets output files and represents them on the web site to the

client.

3.3. Hardware/Software Mapping

Voiceolation just needs a computer, mobile phone, tablet etc. which is able to

open a web browser and so on our website. Also, a stable internet connection between

user and the system for uploading and downloading .

Browser takes input data from the user and sends it to the GPU which is in the

cloud. In the cloud, data is processed in the neural network. After the process, output

data is sent back to the user via browser. Both sending and taking back data we use

HTTP protocol.

3.4. Persistent Data Management

Our application does not hold any data of users, we do not ask e-mail, ID,

password or anything. Users upload their sound files, Voiceolation processes these

sound files, and gives 2 output files. After the output data, Voiceolation deletes all

user input and output data.

The only data we will store is the MUSDB18 dataset -which will be irrelevant

and will not be on the server after training of the neural network- and the neural

network model.
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3.5. Access Control and Security

We do not have access control, because Voiceolation does not have a login

function. We do not check ID, password or email. The only thing we consider is

Terms of Service. If a user accepts ‘Terms of Service’, s/he can use the application

freely. We do not share any user data or user’s uploaded tracks with third party

applications.

3.6. Global Software Control

As mentioned previously, Voiceolation is based on client-server architecture.

Whenever a user makes a request, the system starts to work on it. After making some

processes, the system gets output files. Then these files are sent as a response by the

system to the user. We have fundamentally 3 main phases. The first one is the request

phase which starts with clicking the upload sound file by the user. The second step is

the processing phase. This phase takes input files and works on it. Here we use U-Net

to get results. After the processing phase ends, the response phase starts. System

needs to send responses back to the user. Response data contain two outputs vocal

and instrument sound files.

3.7. Boundary Conditions

3.7.1. Initialization

After clicking the website, the user may see a clear interface. We do

not show any login or register page. The user only needs to accept “Terms of

Service”. After accepting the user can see the upload file screen. If the user

does not accept s/he can not do any processes on the web page.

3.7.2. Termination

Because Voiceolation runs on a web page, the user may close the tab or

web browser. S/he does not need to do any kind of log off operation, just

needs to click the ‘Close’ button.
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3.7.3. Failure

Any kind of interruption causes the re-upload of the files. Because we

do not hold user’s data (such as e-mail, ID or uploaded file). After the

interruption (if any) users need to accept “Terms of Service” again and

re-upload the sound files.

4. Subsystem Services
4.1. Web Application

4.1.1. User Interface

When a user enters the web page, s/he sees Terms of Services rules and a

button to accept it. If the user accepts the terms of service s/he may continue to use

the website. Otherwise, s/he can not do any process. The user sees ‘Upload File’ and

‘Browse’ (for local files) buttons. Now the user is able to upload a sound file from

his/her desktop by clicking the ‘browse’ button as seen in Figure 4.

Figure 4: Audio file upload screen with simple representation
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After uploading the file, the system starts to process and give results as two

different options. One of the options is a Vocal sound file, another one is Instrumental

sound file. The user may listen to output files on the web page by clicking the ‘play’

button as seen in Figure 5. Also, the user may download the sound files by clicking

download button/s.

Figure 5: Listening and downloading the processed audio files screen with simple

representation

4.1.2. Server

On the server side of the web application, there will not be a literal database

and its management. It will get the file and create new sound files by processing it.

After the separation process the input file will be deleted also the separated new sound

files will be online just for a limited time then they will be deleted also.

4.1.3. Process

The given file will be processed by a trained neural network. The network

gives two separated sound files -one of them is vocal and the other is instrumental

tracks- to the server to present to the client.
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4.2. Neural Network

The input file that came from the client, forwarding the network by server. The

file will be a parameter to the program, first it will be preprocessed then goes to the

neural network as input. Then, output will be sent to the client by the server.

4.2.1. Preprocess

4.2.1.1. Low-Pass Filter

The low pass filter is applied to the sound file to reduce the

working area of the network for discarding overhead, faster and more

reliable vocal separation. Filter applied on the time-domain by using

the signal module from scipy.

4.2.1.2. Fourier Transform

The base architecture (U-Net) uses image processing, so the

spectrogram must be created. First, STFT is applied to the ndarray

coming from the low-pass filter by using librosa. Then, the

spectrogram is created by using pyplot module from matplotlib and

display module from librosa.

4.2.2. Network

U-Net is a CNN which is used for biomedical image segmentation. It

has a lot of variants and can be adopted into spectrogram analysis. Our trained

model will predict the vocal from the spectrogram and return the isolated

vocal as a spectrogram to postprocess.

4.2.3. Postprocess

After the image processing operations in the time-frequency domain,

software needs to convert back the processed data to the user as a time-domain

signal. Hence, the system applies an inverse STFT to the spectrogram and

writes out a sound file to the user for download.
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